
~ Pergamon 
www.elsevier.com/Iocat e/j appmat hmech 

PII: S0021-8928 (99)00003.9 

J. Appl. MathsMechs, Vol. 63, No. 1, pp. 9-19, 1999 
© 1999 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
0021--8928/99/S--see front matter 

THE VIBRATION OF A ROTATING HEAVY 
NON-UNIFORM THREAD AND ITS STABILITY f 

L. D.  A K U L E N K O ,  S. V. N E S T E R O V  a n d  A. M .  S H M A T K O V  

Moscow 

(Received 4 June 1998) 

The linear vibration of a heavy non-uniform thread is investigated for different boundary conditions at the ends and taking an 
arbitrary additional tension into account. The thread is assumed to be ideal and inextensible and the motion takes place in a 
plane which may rotate about the vertical axis at constant angular velocity. A general scheme for solving the initial- and boundary- 
value problem is proposed. Attention is focused mainly on the effective computation of the natural frequencies and mode of 
vibration. Given specific parametric types of mass distribution for the thread, sufficiently complete families of solutions describing 
the principal modes of vibration are constructed. Based on these families, stability and instability domains are constructed effec- 
tively, in terms of the system parameters, for a plane vibration of a rotating heavy thread subject to concentrated tension. New 
mechanical effects, of possible interest in practice, are observed and discussed. © 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the small plane transverse vibration of a rotating heavy non-uniform thread subject to an 
arbitrary additional tension. The conditions governing the attachment of the thread above and below 
are represented in the general form of non-homogeneous boundary conditions of the third kind (elastic 
attachment). As a result we arrive at the following boundary-value problem 

p(x)//= (W(x)u') '+p(x)co2u+f(x,t) ,  0 <  x < l, u = u(x,t) (1.1) 

W(x)u'(x, t) -T- kxu(x, t) = -T-h~ (t), x = O, l (1.2) 

where u denotes the transverse displacements of the thread elements in a plane rotating about the vertical 
x axis, dots denote derivatives with respect to time t, primes denote derivatives with respect to the Euler 
coordinate x, l is the length of the thread, p(x) denotes the linear density, W(x) is the total tension in 
the cross-section corresponding to the x coordinate, co is the angular velocity of rotation of the plane 
(co = const),f(x, t) is the distributed external force, k0~ are the coefficients of elasticity of the attachment 
and h0j are the external force effects, concentrated at x = 0, l. The function 9(x) is assumed to be 
continuous and separable from zero: 0 < Pl ~< p(x) ~< 92 < ~; the functionsf(x, t) and hoj(X) are also 
assumed to be sufficiently smooth in their domains of definition. 

It will be assumed below that the total tension W(x) of the thread in (1.1) and (1.2) is due to two 
factors: the weight of a segment of the thread, m(x)g, and an additional load W0 concentrated at the 
lower end, so that the total tension may be expressed as 

x 

W(x) = m(x)g+ W o, re(x) = ~9(s)ds, W 0 ~> 0, g > 0 (1.3) 
0 

Here g is the acceleration due to gravity (if necessary, the variability of this acceleration may be taken 
into consideration) and W0 is a force concentrated at the lower or (and) upper end (x = 0) (the weight 
of a load acting through a block, or a force of some other physical nature---elastic, electromagnetic, 
etc.). The extension of the thread will be neglected, since normally W(x) ~ ES(x), where E is Young's 
modulus of the material and S(x) is the area of cross-section. An investigation of the combined transverse 
and longitudinal vibrations require a separate study. In order to determine the motion of system 
(1.1)-(1.3), the initial distributions of the displacements and velocities of the points of the thread must 
be given 

u(x,O)=u°(x), ti(x,0)=ti°(x), O<~ x<~l (1.4) 

The functions u ° and ti ° in (1.4) are assumed to be sufficiently smooth for a strong (physical) solution 
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of the initial- and boundary-value problem (1.1)-(1.4) to exist. It is required to construct such a solution 
and to investigate its properties, depending on the parameters of the system. 

Studies of the vibration of a heavy thread taking into account additional tensions (both longitudinal 
and transverse) are of considerable interest, both theoretically and in practice; see [1-5] and other literature. 
It is particularly important to analyse the natural vibration, based on solving the boundary-value problem 
of finding the eigenvalues and eigenfunctions of an equation with variable coefficients [1-9]. 

Remark. The mathematical model of the vibration of a heavy thread in an arbitrary plane, when the thread is 
not rotating (the classical case), is obtained from the above by setting co = 0 in Eq. (1.1). The small vibration of 
a free rotating thread (i.e. a thread not subject to plane constraints) in the general case may be three-dimensional 
due to Coriolis forces of inertia. In a rotating system, these are described by the following vector relations (see 
(1.1), (1.2) and (1.4)) 

p ( x ) i i  = ( W ( x ) u ' ) '  + p (x) (c02u  - 2[ to  × / I ] )  + f (x ,  t)  

(1.5) 

W(x)u'(x,t)-T-kxu(x,t) = -T-hx(t), x = 0,1 

Using an orthogonal transformation, that is, changing to a non-rotating reference system, we obtain a boundary- 
value problem equivalent to the case co = 0. Simultaneously, the vectors f, h0j, t~), li ° must be appropriately 
transformed. Indeed, we have 

p(x)tl = (W(x)U')" +F(x,t,(p), u = FI(q~)U 

[ W(x)U' -T- kxU]x=o, t = -T-H0d, Hod = I-1-1 (q~)h0, t (t) (1.6) 

F=Fl-l(cp)f, ll-l(¢p)= Fl(-q~)=l-IT(q~), ¢p=o~t 

Here 1-l(~p) is the rotation matrix. As a result we obtain a system of two boundary-value problems (1.6). Each problem, 
for the com~..nents U1 and U2 of the vector U, can be solved independently, since the components of the vectors 

0 0 F, H0j, U ,  U are known. The homogeneous boundary-value problems, and the corresponding Sturm-Liouville 
problems do not contain the parameter co in the coefficients of U and U, that is, they are equivalent to the case 
co = 0 in (1.1). System (1.1), (1.2) may therefore be considered to be more meaningful and general than the vector 
analogue (1.5), (1.6) just considered. Note that these problems are essentially different in their formulations and 
the solutions may be qualitatively different. 

A boundary-value problem analogous to (1.6) may be obtained by introducing the complex variable x = ul - 
iu2 and substituting z = w exp (ico). The unknown complex function w(x, t) is described by relations of the same 
form as (1.l), (1.2) (setting co = 0 in the coefficient ofu in the vibration equation (1.1)). Of course, the transformed 
functionsf and h0s will contain the factor exp(-icp). 

2. T H E  S O L U T I O N  OF T H E  I N I T I A L -  AND BOUNDARY-VALUE P R O B L E M  

We will apply the standard approach (the Fourier method), based on constructing a solution of the 
homogeneous boundary-value problem (1.1), (1.2) (with f = ho, t - 0), since it admits of separation of 
variables. To determine the eigenvalues (natural frequencies) and eigenfunctions (natural modes), we 
obtain a modified self-adjoint boundary-value problem (the Sturm-Liouville problem [6-9]) 

(W(x)X ' )"  + Ap(x)X = 0, A = ~. + 0) 2 

W(x)X ' ( x ) -T -kxX(x )=O,  x =0 ,1  
(2.1) 

~n + LnB. = f .  (t) + X. (0)ho(t) + X n (l)h/(t), f .  = ( f ,  X n ) 

Bn(0 ) = (u °, Xn) p, B(0) = (u° ,Xn)  p, u(x , t )  = ~ B . ( t ) X n ( x )  
n=l 

(2.2) 

Here  A and X ( x )  are an unknown eigenvalue and eigenfunction of problem (2.1) and ~. is the separation 
parameter.  It is required to construct a complete denumerable family of orthonormal functions {Xn(x)} 
(basis) and a set of numbers {An} [6-9]. The solution of this problem is of fundamental interest from 
an applied point of view; see below. 

Let  us suppose that such families are known; we then obtain a denumerable linear system of inde- 
pendent equations and initial conditions for the Fourier coefficients On (n = 1, 2 , . . . )  
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where the parentheses denote scalar products. 
A solution On(t) of the Cauchy problem (2.2) can be constructed by elementary means, using simple 

quadratures. It will be assumed in what follows that the free motions of the thread (that is, with f = 
hog = 0) are vibratory, that is, the smallest eigenvalue ~,1 is positive. The situation in which ~L 1 ~ 0 may 
be of interest for applications, since then the plane vibration of the rotating thread becomes unstable. 
Such a state of the motion means that the displacements and velocities of the thread elements increase 
at an exponential or linear rate. In that case, non-linear factors, dissipation, etc. must be taken into 
account. 

From the theoretical and applied points of view, it is most important to carry out a high-accuracy 
investigation of the behaviour of the lower frequencies of free vibrations, in particular, of the fundamental 
frequency [6-9]. The aim of the subsequent study is to achieve a sufficiently accurate computation and 
detailed analysis of the first eigenvalue ~,1 as a function of the parameters of system (1.1), (1.2). To that 
end we will use the efficient numerical-analytical method of accelerated convergence, based on the 
variational approach to the solution of the Sturm-Liouville problem (2.1) and the differential relation 
established between the eigenvalue ~,1 and the parameter / - - the  length of the thread [8]. 

3. T H E  V A R I A T I O N A L  A P P R O A C H  T O  T H E  S O L U T I O N  
O F  T H E  S T U R M - L I O U V I L L E  P R O B L E M  

Let us express Eqs (2.1) in the form of a variational isoperimetric problem [6-9] 

l 

~ [ X ]  -- S W(x)X '2dx  - W ( x ) X ' X  I/---~ min 
o x 

I[X] =11X II 2= (X, X)p = 1, [ W ( x ) X ' ( x )  T- kxX(x)]x=O, t = 0 

(3.1) 

Ik[X] =(X, Xk_t(X)) p = 0, k = 1,2 .... n (3.2) 

The functions )(1, 2(2 . . . . .  Xn-t in (3.2) are assumed to be known, having been constructed at the 
previous steps. The general properties of the numbers An as a function of the index n and of the functions 
Xn(x) as functions of n and x have been investigated in detail in [6-9]. 

The Sturm-Liouville problem (2.1) is the boundary-value problem corresponding to the Euler-  
Lagrange equation. It determines the necessary and sufficient conditions for the functional O of the 
variational problem (3.1), (3.2) to have a minimum; A is a Lagrange multiplier. Note that the terminal 
term in (3.1) is also positive-definite for k0,t > 0. 

Using (3.1), one can obtain an upper bound AT for the first eigenvalue A1 (the Rayleigh principle 
[6-91) 

0 < A I ~ A t = ~[~]  / I[V], [W(x)~ (x) :I: kx~(X)]x=O, l = 0 (3.3) 

where ~(x) is a continuously differentiable "trial" function (or comparison function) satisfying boundary 
conditions (3.3) and chosen from general physical considerations regarding the first mode of vibrations 
(often in the form of trigonometric or polynomial functions); see below. Computational practice has 
shown [6--9] that even a very rough selection of the function ~¢(x) in (3.3) yields satisfactory results: the 
initial estimate A]' differs from the exact value with a relative error ranging from 1% to 10%. Given 
such an accuracy, one can use a procedure to increase the accuracy of At, obtaining a very precise result 
(a relative error of 10-4-10 -8) at a quite moderate computational cost; see Sections 4-6 below. As observ- 
ed in Section 2, the rapidly converging method of accelerated (quadratic) convergence was developed 
to that end. If the initial approximation to A1 (or to A2, A3 . . . .  ) is not precise enough, one can use 
other methods (the Rayleigh-Ritz method, the finite-element method continuation with respect to a 

The absolute minimum of the functional O[X] = A in problem (3.1) is the first eigenvalue A1, and 
the differentiable function X(x, A) at which this minimum is reached is the first eigenfunction Xl(x) = 
X(x, A1). If W(x) 1> W0 > 0, a solution of the variational problem exists and is unique, and then A1 > 
0 for all k0, t ~> 0. Only in the limiting case k0j = 0 (both ends of the thread are free) do we obtain 
A0 = 0()~0 = -co 2 ~< 0), while Xo(x) - 1/'J(m(l)), where m(l) is the mass of the thread. 

The subsequent eigenvalues An and eigenfunctions Xn(t), n i> 2, are defined by relations (3.1) and 
the additional conditions that the desired functions be orthogonal with weight p(x) to the previous 
functions, as expressed by the following recurrence relation 
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parameter, etc.). For a rigorous justification and convergence rate estimate for the Rayleigh-Ritz method 
one can consult Krylov [6] and others. Higher-order eigenvalues An (n >> 1) may be calculated using 
high-precision asymptotic formulae [9], which may be used even for relatively small n (n i> 5) and in 
some cases yield satisfactory results even for n 1> 2. 

4. THE M E T H O D  OF A C C E L E R A T E D  C O N V E R G E N C E  

We will present the basic principle of the method (algorithm) as applied to the Sturm-Liouville 
problem (2.1) using the variational relations (3.1)-(3.3) (see [8]). To fix our ideas, we will consider the 
case n = 1, which is of special interest for applications, in particular, for investigating the stability of 
the plane vibration of a rotating heavy thread taking into account an additional tension. Henceforth 
we will simplify the notation by omitting the subscript. 

Thus, suppose that some method, such as the Rayleigh-Ritz method or continuation with respect to 
a parameter (see Sections 5 and 6), has been used to obtain an approximation Ao (in particular, A ° = 
A* (3.3)). We can then formulate a Cauchy problem for Eq. (2.1) [8] 

(W(x)t~ ')'+ A°p(x)v = O, v (0) = aol,  v '(0) = 13 o, ~o + 1$o = 1 

(4.1) 

~o =do(do +~0) -~, 80 = ko(do +g0)  -J, do = Wo l-I 

We will assume from now on that a solution o(x, A°), u'(x, A °) of this Cauchy problem is known with 
sufficient accuracy in numerical or analytical form, or as a computational procedure. It will automatically 
satisfy the zero boundary condition (2.1) at x = 0. The dependence of the functions o and o' on the 
other parameters (ko, do, Wo, g and those occurring in p(x)) will not be indicated at the moment,  in 
order to simplify the notation; see below. 

0 We now calculate the function E(x, A ), requiring it to vanish at some minimum value ofx = G ° > 0, 
that is, we find the first positive root, ~0 of the equation 

E(x,A°) = at lv(x)v  ' (x ,A°)+~tv(x,A°)=O, o~ I +[~t = 1 (4.2) 

o~t = dt(dl + kt) -I, ~t = kt(d! + kt) -l, all = W(l)l-I 

V(X) -= W(x)W(l) -1, ~o = ~(A o) = min arg x E(x, A °) > 0 

The relation for ~0 in (4.2) is constructed during the numerical integration of the Cauchy problem 
0 0 (4.1). If A is sufficiently close to A, the root ~ exists and is simple. As a measure of this closeness, 5, 

we take a numerical parameter 

E = ( l - ~ ° ) l  -I, 0 ~ l e l ~ l ,  ~ = ( A - A ° ) A  -I, 0~<151"~! (4.3) 

We have e = 0 if and only if ~ = 0. In what follows, we will assume that, given A °, the value of the 
root G ° and the parameter e of (4.3) have been found with sufficient accuracy. In the procedure presented 
here, the solution of problem (4.1)-(4.3) turns out to be one of the main and more costly operations 
(in computational terms). 

We will use perturbation methods [10, 11] to approximate the solution of the initial Sturm-Liouville 
problem (2.1). According to previous work [8, 11], we obtain an improved value A 0) in the first approxi- 

z mation with respect to e (with error O(e )) 

A°)=A°+el . t (~  °, A°), ~°=~(A°),  g < 0  (4.4) 

12(~o, A 0) = _~o w(~O) 0"2 (~o, A 0) II u 0 II -2 -A°~°p(~ °) u 2 (~0, A o) II v oll -2 

where II o0 II is the mean-square norm with weight p(x) of the function o0 = o(x, A°), defined by analogy 
with (2.2) in the interval 0 ~< x ~< ~(0). By (4.4), the quantity ~t(k, A)1-1 is the derivative of the eigenvalue 
A with respect to l; obviously, it is strictly negative. This means that increasing the length l of the thread 
(string) decreases the frequency of natural vibration (A - 0)2) 1/2 and decreasing it increases the frequency. 

This process, computing progressively better approximations to A, may be continued indefinitely. 
We now use the improved value A 0) as the initial approximation, as A ° was used, in relations of the 
same type as (4.1)-(4.4); we again obtain an improved value A (2) = A (1) + e(1)la(~(l) , A(I)), where e0) 
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corresponds to the root ~(1) = ~(A0)); and so on. As a result, we obtain the following recurrence proced- 
ure for improving the accuracy of the eigenvalue A and the eigenfunction X, which has the property of 
accelerated (quadratic) convergence with respect to the original small parameter e. The algorithm is 
described by the following relations 

Ark+l) = Ark) +tZ~k)~(~k), 3~k)), E~k) = ( l_~k) ) / - l ,  k =0,1,2 .... 

~k) = ~(A(tO) = minarg x E(x, ACk)) > 0, ~0) = G0 = ~(A0), E~0) = e (4.5) 

E(x, A tt) ) - atlv (x)v "(x, A Ck) ) + [~t v (x, A (k)) = 0 

(W(x )v ' ) '+A~)p(x )v  =0, v(0)=tx0l, v'(0)=[~0, v~k)=v(x, A ~k~) 

The functions U<k), O'<k), E are obtained by numerical integration of the Cauchy problem (4.5), that 
is, of problem (4.1) for A U = A~k); it is assumed that A <k) was evaluated in the previous iteration. The 
procedure (4.5) yields the following error estimates at the (k + 1)th step [8] 

IA~k+l) -Al~  < C^e ~k+l~, le<k) l~< d(ce) °tk), 0 (k)=2  k, k=0,1 ,2  .... 

max(I X(x, A) - v  (x, ACk)) I +l I X'(x, A) - v  '(x, A Ck)) I~ < Cx e{k) (4.6) 
x 

0~< x<~ max(/,~<k)), C^,x,c,d=const 

The constants C^~v, c and d may be effectively estimated based on the properties of the function p(x) 
and the quantities l, W0, g and k0d. Thus, algorithm (4.5) yields accelerated convergence (quadratic with 
respect to e) of the unknown quantities according to (4.6). Computational practice has shown the process 
to be extremely efficient: it is simple to implement, stable to noise and does not lead to rounding- 
off error accumulation. Two to four iterations are usually sufficient to determine practically precise values 
of A,X(x), IIXlI, X' for fairly rough choices of the trial functions W(x) (3.3). The efficiency of the computa- 
tions increases markedly if the convergence acceleration algorithm is combined with the procedure 
of continuation with respect to the system parameters, depending on whose values the required 
solution A, X(x) is constructed (see below). Note that the accuracy of computations using (4.5) 
must be compatible with the iteration index k; there is no point in carrying out excessively accurate 
computations. 

The subsequent numbers An and functions Xn(x), n >>- 2 are determined according to the scheme 
outlined above. The difference is that the root of the equation E(x, An (k)) = 0 (see (4.2) and (4.5)) to 
be calculated with the requisite accuracy is the nth root ~(An(k)) rather than the first root, as in the case 
considered above. 

To evaluate the quadratures for the mean-square norm with weight p(x), II ock) II, in Eqs (4.4) and (4.5), 
one usually uses some very accurate method to integrate functions defined by numerical solution of 
Cauchy problems, such as Simpson's method. Instead of this process, it is possible to compute the 
functions w = Oo/OA, w' = dw/dx by combined integration of the Cauchy problem (4.1) for t) and t)' 
and the following Cauchy problem for w and w' and the following Cauchy problem for w and w' 

(W(x)w')" + A~)p(x)w = -p(x)v,  w(0) = w'(0) = 0 (4.7) 
(k) 

IIv k II 2-- ~ v 2(x, ACk))p(x)dx = 
0 

= w(~k))[w(~ ~ ,  A(k))v "(~), A ~ )  -v (~t~), A~))w'(~ ~), A(~))] 

In computations, instead of integrating the system of equations (4.1) and (4.7), it is more convenient 
to use systems of equations of standard Cauchy form 

v' = y/W(x), y" = -At~)p(x)v, o(0) = ez0/, y(0) = ~)W 0 

w" = zlW(x), z' = -A~)p(x)w - p(x)v, w(0) = z(0) = 0 (4.8) 

suitably transforming the expressions for E(x, A (~)) and [I u(k) [I 2. 
In conclusion, it should be noted that in all the expressions (4.4)-(4.7) one can set ~fk) = I without 

q,) (k) lOSS of accuracy in powers of e , except the expressions for determining the quantity e (see (4.3), (4.5)). 
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We will now consider specific examples of linear densities p(x) and boundary conditions, that is, values 
of the parameters ~t0S, 130~. 

5. THE N A T U R A L  V I B R A T I O N  OF A U N I F O R M  HEAVY 
R O T A T I N G  T H R E A D  S U B J E C T  TO T E N S I O N  

If it is assumed that the linear density function is constant, p = const, the Cauchy problem (4.5) 
becomes 

(~s(x, Z)v ")" + W = 0, ~, = ~'~) = ~A<k)f/-2, v (0) = oto, v '(0) = [~0 (5.1) 

o ( x , ~ ) = l + ~ ( x - 1 ) ,  Z=mg(Wo +mg) -1, 0 < Z < I ,  ~2 =gl-I 

The function v and the argument x (0 ~< x <~ 1) are normalized by the value of l, m = pl. Accord- 
ing to (5.1), the equation determining the abscissa ~fk) (4.5) normalized by I may be written as 

E(x, 7 Ck) , Z) = otto(x, Z) v '(x, 7 ~k), Z) + [~t v (x, ~,~k) Z) = 0 (5.2) 

~k) = ~(,t~k), ~), ott, 13t --- 0, at  + 13t = 1 

It is convenient to use Eqs (5.1) and (5.2) in procedure (4.5) together with the method of continuation 
with respect to the parameter ~, that is, to look for ~, = ,f(~), t~ = t)(x, ~). In the limit of negligibly 
small weight mg of the thread relative to W0 (the mass occurs only in y), we obtain the model of a 
string with elastically attached ends. The Cauchy problem is integrable by elementary means 
in trigonometric functions. To determine ~,(0), we have to solve a transcendental equation for 
v = 

z _> 1 (5.3) tgv = v(oto[~ t + I~oott)(v2otoal - 13013t) -I , 7n = Vn, n 

The value of Vn depends on the two parameters ct and 13, where ct = (a0, at), 13 = (130, 13t) are 
related to one another by the normalization conditions a + 13 = (1, 1). In particular, when c~ 0 = 0, 1 
(130 -- 1, 0) and at = 0, 1 (1St = 1, 0), we obtain the well-known elementary cases of attached or free 
ends. In the general situation, the required roots v% = Vn(a, 13) of Eq. (5.3) may be found numerically. 
The eigenvalues ~'n(0) and eigenfunctions Xn(x, 0) have the following form (n = 1, 2 . . . .  ) 

Tn(0) = v 2, Xn(X) = a o COS VnX + I]0V: I sin VnX (5.4) 

AS observed previously, the subject of most interest for applications is that of the lower frequencies 
and modes of vibration, in particular, n = 1. 

The value of 7(0) as in (5.4), which was calculated from (5.3), will be used below as an initial estimate 
7 o when Z = Z1 > 0, where Z1 is sufficiently small, as may be established by numerical experiment. 
Integrating the Cauchy problem (5.1) for 't = y0 and determining the necessary root ~(0) = ~(70, Z1) 
from (5.2), we then use formulae (4.3), (4.4) and (4.7) to find an improved value of ~(1)(Z1), and then, 
applying the recurrence procedure, we obtain a high-accuracy approximation,/(X1). We then implement 
the process of continuation with respect to the parameter Z: 0 < )~1 < ~2 < • • • < Zi < 1, where i is 
sufficiently large. 

It is well known that Eq. (5.1) can be reduced to a Bessel equation of order zero [1, 3, 12]: replacing 
the argument x in one-to-one fashion by 0, we can use a standard procedure to obtain the required 
Bessel equation and its general solution t~0 

v"+0- tv '+ 'qZv  =0, v =v(rl0), 1] 2 =4"1~ -1, 0 < Z < I  

v o = AJo(z) + BNo(z), z = 110, A,B = eonst (5.5) 

0.~.(~I~(X,~), 01 <0~  1, 0| =(1--~) 1~, 0<01 <l  

where the prime denotes derivatives with respect to 0. Detailed analytical, numerical and graphical data 
for the Bessel functions Jr(z) and Neumann functions Nv(z) of order zero (v = 0) and other orders may 
be found in [12]. Using the boundary conditions for 0 = 01, 0 = 1 (see (5.1) and (5.2)), we obtain a 
characteristic equation for the quantity 11 = rl(0~, a, 13), which is related to V = "t(~, ct, 13) by (5.5). This 
equation also contains derivatives of the functions J0, No : Jb = -J~, Nb = -N~ [12]. 
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Note that 01 ~ 1 as Z ~ 0 (the model of a string), that is, the substitution Z ~ 0 (5.5) becomes 
degenerate. This situation was considered above (see (5.3) and (5.4)). For small Z (0 < Z ~ 1), one 
can deal with problem (5.1), (5.2) by the method of regular perturbations, for which a generating solution 
is known. The approximate analytical investigation presents no special difficulty or interest. We will 
now consider the general case 0 ~< Z ~< 1; letting Z ~ 1 (01 ~ 0) we obtain regular singular pointsx = 
0, 0 = 0 in Eqs (5.1) and (5.5), respectively. This situation requires an asymptotic analysis, which is 
more conveniently performed on the basis of Eq. (5.5) and the functions J0 and No. 

Investigations of solutions of the problem for arbitrary admissible %,t, 130,t are extremely cumbersome. 
We will therefore consider the special cases of boundary conditions corresponding to the limiting values 
of %. l, 130. t, paying particular attention to an analysis of the first mode of vibration. 

1. Let Ctl = 130 = 0 (% = 13t = 1); this is the classical case of the vibration of a heavy non-uniform 
thread (chain) with an additional tension. Figure 1 (curve 1) shows the function Y(Z), the mechanical 
interpretation of which (5.1) is more intuitive than that of ri(0 0. It follows from the graph that y(0) = 
n2/4, and "/(2) decreases monotonically as ~ ~ 1; the minimum is y(1) = ri~/4, where ri0 = 11(0) ~, 2.4048 
is the first root of  the function J0(rl) [1, 12]. A~symptotic analysis of the root 11(0) for 0 ~< 01 ~ 1 yields 
an approximate expression "0(01) ~ rl0 + O(02), from which it follows that ?(Z) = y(1) + O((1 - Z)), 
that is, the function Y tends linearly to 7(1) when 0 ~< 1 - Z ~ 1. In general, too, Y(2) decreases in a 
practically linear fashion (see Fig. 1). 

The family of normalized eigenfunctions V(x, 2) = ull o II -1 is represented in Fig. 2 by the dashed curves; 
curves 1-3 correspond to the values Z = 0.9999, Z = 0.9 and Z = 0. At Z = 0 (curve 3) one has the 
vibration of a tautly stretched string with free lower end; the situation Z ~ 1 (curve 1) corresponds to 
the vibration of a heavy thread without additional tension [1], whose first mode is described by the 
function J0(ri00) = J0(2~/7(1)x). Curve 2, for the intermediate value Z = 0.9, is shown in order to clarify 
the evolution of the family as Z varies from 2 = 0 to Z = 1. 

2. An analogous analysis may be carried out for the "inverse" case % = 131 = 0 (~1 = 130 = 1) ,  that 
is, the upper end is free and the lower end is fixed. A graph of the function '/(2) is shown in Fig. 1 (curve 
2). Note that for small Z curves 1 and 2 are close to each other, but as Z ~ 1 they separate and one 
observes a qualitative difference: ? ~ 0 as 2 ~ 1. The decrease turns out to be very slow; when Z = 

l 1/2 0.9999 one has y - 0.1. Asymptotic analysis yields the estimate ri(00 = O((ln0~- - 1/2)- ), 01 ~ 1, 
which, for the desired value o f?  is reduced to the form 7(Z) ~ O((ln(1 Z Z)-1_1)-1), where 0 < 1 - Z ¢ 1. 

Figure 2 shows the normalized eigenfunctions V(x, 2) (the dot-dash curves); curves 4-6 correspond 
to the Z values specified in (1) above. Curve 6 is analogous to the curve for case 3 of the vibration of 
a string with free end. As Z ~ 1 (curve 4), the function V(x, 2) tends weakly to a discontinuous function 
of the Heaviside type, indicating that a thread with free upper end and without additional tension cannot 
perform a natural vibration. The functions ?(Z) and V(x, Z), where 0 < Z ~ 1, can easily be investigated 
by a perturbation method. 
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3. The vibration of a heavy thread with additional tension when both ends are fixed, that is, (z0. t = 0 
(130, l = 1)) is of particular interest. A graph of the function y(Z) is shown in Fig. 1 (curve 3). This function 
decreases quite rapidly from ~/(0) = n 2 to '/(1) = ri~/4 = 1, 4, with the rate of decrease increasing (in 
absolute value) without limit as Z 1" 1. Comparison with case 1 shows that curve 3 remains above 
curve 1 when 0 ~< ~ < 1. Thus, at non-zero tension, the frequency of the natural vibration of a "string" 
exceeds that of a thread with a free end. Asymptotic analysis using Bessel and Neumann functions yields 
the approximate expression rl(01) = rl0 + O(ln-l(1 - ;0-1), from which it also follows that curve 3 will 
be above curve 1 for all 0 ~< ~ < 1. 

0 (curve 9) The normalized eigenfunctions V(x, Z) are shown in Fig. 2 (the solid curves). When ~C ~ 1 (curve 7), 
one obtains the classical case of the first mode of a uniform tautly stretched string. As Z 
the eigenfunction tends (weakly) to a discontinuous function, which is identical in form when x > 0 
with J0(2~/Q/(1)x)) (apart from a normalizing factor; see case 1). It is clear, however, that the "string" 
cannot vibrate without additional tension. 

4. The case of a heavy stretched thread free for transverse displacements (130,1 = 0, or0,1 = 1) obviously 
leads to zero values of ri(01) = ~/(Z) - 0 for all admissible values 0 ~< 01, Z ~< 1 and to a mode V(x, Z) -= 1 
(see (5.1) and (5.5)). The next root of the characteristic equation will be non-zero. For this root we 
have 11(0) = 3.8317 (Jl(ri) = 0). 

Let us investigate the stability of the vibration of a thread for the boundary conditions of cases 1-4 
on the basis of the graphs of the functions Y(Z) (Fig. 1). These values and the families of normalized 
functions V(x, Z) were constructed by the accelerated convergence method of Section 4, using the scheme 
(5.1), (5.2) and the procedure of continuation with respect to the parameter Z. It is extremely difficult 
to use Bessel and Neumann functions to find the desired solution by numerical means. Computational 
practice shows that a rapidly converging method for constructing the eigenvalues and eigenfunctions 
is more efficient, even in the case considered of a "known exact solution" in special functions (see below, 
Section 6). 

A sufficient condition for the plane vibration of a rotating heavy thread with additional tension 
to be stable is the inequality ;~ > 0. It follows from the definition of the parameter y (5.1) that the 
following inequality holds (the stability condition for a vibration with respect to the particular norm 
chosen) 

~ )  > r~,  0 _< X < 1, r = to2f~ -2, T = (Z, + o)2)~f'/-2 (5.6) 

Fix some value of F >t 0. Then the thread will perform a stable motion at those values of 9C for which 
the points on the curves ~'(Z) lie above the straight line F z. In cases 1-3 such values of Z, 0 ~< Z < Z* ~< 1, 
exist. A geometric interpretation of condition (5.6) is presented in Fig. 1. In addition, in cases 1 and 3, 
when 0 <~ F < y(1) ~, 1.4, this inequality holds for all )C, 0 ~< Z ~< 1. As F increases, the length of the 
interval 0 <~ ~C ~< ~C* decreases, in such a way that ;C ~ 0 as F ~ oo, which is natural. In case 4 Q/(;C) - 
0) the "vibration" is always unstable: when F = 0 (co = 0) the instability is secular; when F > 0 (to 
0) i t  is exponential. These conclusions are in agreement with mechanical considerations. 

6. THE V I B R A T I O N  OF A N O N - U N I F O R M  T H R E A D  

Using the accelerated convergence method of Section 4, we will investigate the free vibration of a 
heavy non-uniform string whose total mass is fixed and equal to rn.. As observed, to fix our ideas, we 
will confine our attention to the high-accuracy computation of the first eigenvalue and eigenfunction, 
considering two examples. 

6.1. A linearly varying massper  unit length. Suppose the linear density p, mass m and tension Whave 
the form 

p(x) = po(l - ×(2x - / ) / -5  

re(x) = p0x(l - x(x -/)/--1), -1 < x < 1, re(l) = pol = m, 

W(x) = W o + Po - Po[l - x/"l(1 + x - xad-l)], Po = m,g  
(6.1) 

It then follows from (6.1) that m(l)  = m .  and that the mass is independent of the parameter ~: 
characterizing the coefficient of variation of the linear density in the admissible range: p(x) > 0 for all 
0 ~< x <~ l; a tx = / /2  or ~: = 0 the quantity p - P0 is independent of the values of ~ orx. Using formulae 
(6.1), we transform to a dimensionless argument x and dimensionless parameters ~/, ~: and Z in the 
Sturm-Liouville problem (2.1), obtaining the following equation 
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(p(x)X')' + yr(x)X =0, ~,= ~A.fg-2, f12 = g/l 

0 <x  < 1, p(x) = 1 -~(1 - x ( l  + ~ - xx)),-1 < ~ < 1 (6.2) 

r(x) = 1 - -  2x(x - 1/2), ~ = Po(Wo + eo) -1, 0 < ~ < 1 

This equation contains the two given parameters ~: and Z and the unknown parameter 7, which is to be 
determined. 

The parameter Z in (6.2) characterizes the ratio of the weight of the thread P0 to the total tension 
at the point x = 1. Note that l K [ < 1; as K ~ _ 1 the inextensibility condition may be violated. The 
boundary conditions take the form 

a x p ( x ) X ' ( x ) ~ x X ( x )  = 0, o~ x > 0, I~ x _> 0, ~x +13x = l,x = 0,1 (6.3) 

We will now consider conditions of the first kind at one or both ends, by analogy with cases 1-3 in 
Section 5. In this case, the eigenvalues , /of  problem (6.2), (6.3) will depend on two parameters , /=  7(~:, 
Z). The problem considered in Section 5 corresponds to the case K = 0. We then apply the accelerated 
convergence method (Section 4) and the procedure of continuation with respect to the parameters 
and ~. As initial exact value of y, used also as the estimate ,/0, we take y0 = y(0, 0) = n2/4 (cases 1 and 
2) and ~,0 = n2 (case 3). Case 4 (both ends free) will not be considered, for the reason outlined in Section 
5 (instability of the motion). Modern computers enable us to make a highly efficient computation of 
the surface ~ = y(K, Z) using the accelerated convergence algorithm, as well as a graphical construction 
of a suitable projection of the surface. However, to determine the numerical data it proves more 
convenient to determine the surface as a sufficiently dense family to functions, that is, in terms of partial 
sections with respect to K or Z, or by level curves, that is, sections with respect to ),. The values of ,/at 
intermediate points can be approximated with sufficient accuracy by interpolation. 

Figures 3(a), 4(a) and 5(a) show level curves of the surface " /=  )'ka(×, Z) = C, k = 3, 4, 5 for the 
three types of boundary conditions considered; the numbers on the curves indicate the value of c when 
the parameters ~: and Z vary in the ranges I × I ~< 0.99, 0 ~< Z ~< 0.99. The case K = 0 corresponds to 
the uniform thread considered in Section 5. Comparison of the families reveal the essential role of the 
boundary conditions (i.e. the mode of attachment at one or both ends). The boundary conditions of 
case 3 in Section 5 (the classical case) yield strictly positive values ofy3,~(~:, Z) (see Fig. 3a), which decrease 
monotonically as functions of ~: and Z as × ~ 1, Z ~ 1 and increase monotonically as × --+ -1, Z ~ 0. 
These conclusions are in agreement with mechanical considerations. In particular, it is interesting to 
observe that, for any fixed value of 0 ~< Z ~< 1, the frequency of the vibration decreases as r increases 
from ~: = -1 to ~: = 1. The graphs in Fig. 4(a) confirm the considerable influence of the boundary 
conditions: as ~: ~ 1 a large part of the thread remains fixed, leading to an increase in the vibration 
frequency. Note that the decrease as a function of Z in the value of , / for  fixed values of K seems quite 
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obvious. The qualitative difference between this case and that of Fig. 3(a) is that ~/4a(×, 1) - 0, that is, 
the vibration "frequency" becomes imaginary ()~1 = -o2)  • This indicates instability of the motions of 
the thread. 

Figure 5(a) represents analogous sections for the boundary conditions of case 3 in Section 5 (both 
ends are fixed). The curves are almost completely symmetrical about the lc = 0 axis, confirming the 
crucial significance of the boundary conditions. One observes only a slight influence of the mass 
distribution. Note that the values of 3,5a(K, X) for all I × I < 1, 0 ~< ~ < 1 exceed ~'3, 4ct (  1(, )~) ;  this is a 
consequence of the influence of the boundary conditions (see below). 

6.2. A parabolically varying linear density. Let us assume that the cross-section of the thread is a circle 
whose radius is a linear function of ~c, like the function p(x) of (6.1). The volume is assumed to remain 
constant. Then, after introducing a dimensionless argument and dimensionless parameters for the 
functionsp(x) and r(x) in (6.2), we obtain 

p(x) = 1 - ~[1 - (3(1 + ×)2 x - 6(1 + x)xx 2 + 4x2x 3)(3 + x 2)-1 ] 

r(x)=3(I-2x(x- l /2))2(3+×2) -], 0 < x < l ,  Ix l<l ,  0 < ~ < 1  
(6.4) 

The parameter ~ in (6.4) has the same meaning as in (6.2). In the limiting case Z = 0 (Po/Wo ~ 0), 
the tension is p(x) --- 1, corresponding to the model of a non-uniform string of variable linear density 
r(x). The initial approximation to ~, in the method of continuation with respect to the parameters K and 

is defined as in Section 6.1, while the boundary conditions have the form (6.3). Graphs of the computed 
values of ~,g6(×, ~), k = 3, 4, 5 are shown in Figs 3(b), 4(b) and 5(b); they correspond to the three types 
of boundary conditions indicated in Section 6.1 (see (6.3)). Comparison with the corresponding curves, 
which were discussed above, shows that their behaviour is qualitatively the same. The numerical data 
for fixed values of ~:, ~ (Z < 1) may differ considerably. The somewhat higher values in Figs 3(b) (as 
K ~ -1)  and 4(b) (as ~c ~ 1), and, conversely, the lower values (as K ~ 1 and as • ~ -1)  reflect the 
fact that a relatively large or small part of the thread is fixed; this again confirms the essential influence 
of the boundary conditions. 

It is interesting to compare the curves ~'sb = c and ~/5a = c (see Figs 5b and 5a). Their qualitative 
behaviour is the same, but there is a very subtle difference. The slight upward curvature of the curves 
in Fig. 5(b) as I ~c I ---) 1 can be explained by the fact that if the mass distribution has the form (6.4), a 
relatively smaller part of the thread mass m is engaged in vibration, compared to the case of a uniform 
thread (K = 0). In Fig. 5(a), a downward curvature is observed. This corresponds to the mass distribution 
(6.2). In this case, a relatively larger part of the thread mass is engaged in vibration. 

The stability of  the motion of a non-uniform thread can be investigated in the same way as in Section 
5 using inequality (5.6). When ~,(×, Z) > F x, the motion is stable; otherwise it is unstable (secular or 
exponential instability). 

The natural vibration and the conditions for its stability and instability, allowing the density of the 
thread to be arbitrary, may be analysed by analogy with the previous discussion. 

Thus, the numerical-analytical method of accelerated convergence proposed here enables one to 
determine efficiently the natural frequencies and modes of vibration of a heavy non-uniform thread 
with additional tension for different boundary conditions. If the plane of the vibration is rotating, the 
method also enables one to determine the range of parameter values, including the velocity of rotation, 
for which these motions satisfy stability or instability conditions. 
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